Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Int Breastfeed J ; 19(1): 23, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589955

RESUMO

BACKGROUND: A lack of safety data on postpartum medication use presents a potential barrier to breastfeeding and may result in infant exposure to medications in breastmilk. The type and extent of medication use by lactating women requires investigation. METHODS: Data were collected from the CHILD Cohort Study which enrolled pregnant women across Canada between 2008 and 2012. Participants completed questionnaires regarding medications and non-prescription medications used and breastfeeding status at 3, 6 and 12 months postpartum. Medications, along with self-reported reasons for medication use, were categorized by ontologies [hierarchical controlled vocabulary] as part of a large-scale curation effort to enable more robust investigations of reasons for medication use. RESULTS: A total of 3542 mother-infant dyads were recruited to the CHILD study. Breastfeeding rates were 87.4%, 75.3%, 45.5% at 3, 6 and 12 months respectively. About 40% of women who were breastfeeding at 3 months used at least one prescription medication during the first three months postpartum; this proportion decreased over time to 29.5% % at 6 months and 32.8% at 12 months. The most commonly used prescription medication by breastfeeding women was domperidone at 3 months (9.0%, n = 229/2540) and 6 months (5.6%, n = 109/1948), and norethisterone at 12 months (4.1%, n = 48/1180). The vast majority of domperidone use by breastfeeding women (97.3%) was for lactation purposes which is off-label (signifying unapproved use of an approved medication). Non-prescription medications were more often used among breastfeeding than non-breastfeeding women (67.6% versus 48.9% at 3 months, p < 0.0001), The most commonly used non-prescription medications were multivitamins and Vitamin D at 3, 6 and 12 months postpartum. CONCLUSIONS: In Canada, medication use is common postpartum; 40% of breastfeeding women use prescription medications in the first 3 months postpartum. A diverse range of medications were used, with many women taking more than one prescription and non-prescription medicines. The most commonly used prescription medication by breastfeeding women were domperidone for off-label lactation support, signalling a need for more data on the efficacy of domperidone for this indication. This data should inform research priorities and communication strategies developed to optimize care during lactation.


Assuntos
Aleitamento Materno , Lactação , Lactente , Feminino , Humanos , Gravidez , Domperidona , Estudos de Coortes , Estudos Prospectivos , Canadá , Prescrições
2.
Gut Microbes ; 16(1): 2323234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436093

RESUMO

Childhood obesity is linked to maternal smoking during pregnancy. Gut microbiota may partially mediate this association and could be potential targets for intervention; however, its role is understudied. We included 1,592 infants from the Canadian Healthy Infants Longitudinal Development Cohort. Data on environmental exposure and lifestyle factors were collected prenatally and throughout the first three years. Weight outcomes were measured at one and three years of age. Stool samples collected at 3 and 12 months were analyzed by sequencing the V4 region of 16S rRNA to profile microbial compositions and magnetic resonance spectroscopy to quantify the metabolites. We showed that quitting smoking during pregnancy did not lower the risk of offspring being overweight. However, exclusive breastfeeding until the third month of age may alleviate these risks. We also reported that maternal smoking during pregnancy significantly increased Firmicutes abundance and diversity. We further revealed that Firmicutes diversity mediates the elevated risk of childhood overweight and obesity linked to maternal prenatal smoking. This effect possibly occurs through excessive microbial butyrate production. These findings add to the evidence that women should quit smoking before their pregnancies to prevent microbiome-mediated childhood overweight and obesity risk, and indicate the potential obesogenic role of excessive butyrate production in early life.


Assuntos
Microbioma Gastrointestinal , Obesidade Pediátrica , Criança , Lactente , Gravidez , Feminino , Humanos , Obesidade Pediátrica/etiologia , RNA Ribossômico 16S/genética , Canadá/epidemiologia , Fumar/efeitos adversos , Butiratos , Firmicutes
3.
Int J Obes (Lond) ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302592

RESUMO

BACKGROUND/OBJECTIVES: Delivery by cesarean section (CS) compared to vaginal delivery has been associated with increased risk of overweight in childhood. Our study examined if the presence or absence of labor events in CS delivery altered risk of overweight in early childhood (1-5 years) compared to vaginal delivery and if this association differed according to infant sex. SUBJECTS/METHODS: The study included 3073 mother-infant pairs from the CHILD Cohort Study in Canada. Data from birth records were used to categorize infants as having been vaginally delivered, or delivered by CS, with or without labor events. Age and sex adjusted weight-for-length (WFL) and body mass index (BMI) z scores were calculated from height and weight data from clinic visits at 1, 3 and 5 years and used to classify children as overweight. Associations between delivery mode and child overweight at each timepoint were assessed using regression models, adjusting for relevant confounding factors including maternal pre-pregnancy BMI. Effect modification by infant sex was tested. RESULTS: One in four infants (24.6%) were born by CS delivery; 13.0% involved labor events and 11.6% did not. Infants born by CS without labor had an increased odds of being overweight at age 1 year compared to vaginally delivered infants after adjustment for maternal pre-pregnancy BMI, maternal diabetes, smoking, infant sex and birthweight-for-gestational age (aOR 1.68 [95% CI 1.05-2.67]). These effects did not persist to 3 or 5 years of age and, after stratification by sex, were only seen in boys (aOR at 1 year 2.21 [95% CI 1.26-3.88]). CONCLUSION AND RELEVANCE: Our findings add to the body of evidence that CS, in particular CS without labor events, may be a risk factor for overweight in early life, and that this association may be sex-specific. These findings could help to identify children at higher risk for developing obesity.

4.
BMJ Open Respir Res ; 10(1)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37748808

RESUMO

BACKGROUND: Preventing poor childhood asthma control is crucial for short-term and long-term respiratory health. This study evaluated associations between perinatal and early-life factors and early childhood asthma control. METHODS: This retrospective study used administrative health data from mothers and children born 2010-2012 with a diagnosis of asthma before age 5 years, in Alberta, Canada. The outcome was asthma control within 2 years after diagnosis. Associations between perinatal and early-life factors and risk of partly and uncontrolled asthma were evaluated by multinomial logistic regression. RESULTS: Of 7206 preschoolers with asthma, 52% had controlled, 37% partly controlled and 12% uncontrolled asthma 2 years after diagnosis. Compared with controlled asthma, prenatal antibiotics (adjusted risk ratio (aRR): 1.19; 95% CI 1.06 to 1.33) and smoking (aRR: 1.18; 95% CI 1.02 to 1.37), C-section delivery (aRR: 1.11; 95% CI 1.00 to 1.25), summer birth (aRR: 1.16; 95% CI 1.00 to 1.34) and early-life hospitalisation for respiratory illness (aRR: 2.24; 95% CI 1.81 to 2.76) increased the risk of partly controlled asthma. Gestational diabetes (aRR: 1.41; 95% CI 1.06 to 1.87), C-section delivery (aRR: 1.18; 95% CI 1.00 to 1.39), antibiotics (aRR: 1.32; 95% CI 1.08 to 1.61) and hospitalisation for early-life respiratory illness (aRR: 1.65; 95% CI 1.19 to 2.27) were associated with uncontrolled asthma. CONCLUSION: Maternal perinatal and early-life factors including antibiotics in pregnancy and childhood, gestational diabetes, prenatal smoking, C-section and summertime birth, and hospitalisations for respiratory illness are associated with partly or uncontrolled childhood asthma. These results underline the significance of perinatal health and the lasting effects of early-life experiences on lung development and disease programming.


Assuntos
Asma , Diabetes Gestacional , Criança , Feminino , Gravidez , Humanos , Pré-Escolar , Estudos Retrospectivos , Antibacterianos/uso terapêutico , Asma/epidemiologia , Asma/prevenção & controle , Canadá
5.
Nat Commun ; 14(1): 4785, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644001

RESUMO

Allergic diseases affect millions of people worldwide. An increase in their prevalence has been associated with alterations in the gut microbiome, i.e., the microorganisms and their genes within the gastrointestinal tract. Maturation of the infant immune system and gut microbiota occur in parallel; thus, the conformation of the microbiome may determine if tolerant immune programming arises within the infant. Here we show, using deeply phenotyped participants in the CHILD birth cohort (n = 1115), that there are early-life influences and microbiome features which are uniformly associated with four distinct allergic diagnoses at 5 years: atopic dermatitis (AD, n = 367), asthma (As, n = 165), food allergy (FA, n = 136), and allergic rhinitis (AR, n = 187). In a subset with shotgun metagenomic and metabolomic profiling (n = 589), we discover that impaired 1-year microbiota maturation may be universal to pediatric allergies (AD p = 0.000014; As p = 0.0073; FA p = 0.00083; and AR p = 0.0021). Extending this, we find a core set of functional and metabolic imbalances characterized by compromised mucous integrity, elevated oxidative activity, decreased secondary fermentation, and elevated trace amines, to be a significant mediator between microbiota maturation at age 1 year and allergic diagnoses at age 5 years (ßindirect = -2.28; p = 0.0020). Microbiota maturation thus provides a focal point to identify deviations from normative development to predict and prevent allergic disease.


Assuntos
Asma , Dermatite Atópica , Microbioma Gastrointestinal , Hipersensibilidade , Microbiota , Lactente , Humanos , Criança , Microbioma Gastrointestinal/genética
7.
Metabolites ; 13(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36837767

RESUMO

How gut immunity in early life is shaped by birth in relation to delivery mode, intrapartum antibiotic prophylaxis (IAP) and labor remains undetermined. We aimed to address this gap with a study of secretory Immunoglobulin A (SIgA) in the infant gut that also tested SIgA-stimulating pathways mediated by gut microbiota and metabolites. Among 1017 Canadian full-term infants, gut microbiota of fecal samples collected at 3 and 12 months were profiled using 16S rRNA sequencing; C. difficile was quantified by qPCR; fecal metabolites and SIgA levels were measured by NMR and SIgA enzyme-linked immunosorbent assay, respectively. We assessed the putative causal relationships from birth events to gut microbiota and metabolites, and ultimately to SIgA, in statistical sequential mediation models, adjusted for maternal gravida status in 551 infants. As birth mode influences the ability to breastfeed, the statistical mediating role of breastfeeding status and milk metabolites was also evaluated. Relative to vaginal birth without maternal IAP, cesarean section (CS) after labor was associated with reduced infant gut SIgA levels at 3 months (6.27 vs. 4.85 mg/g feces, p < 0.05); this association was sequentially mediated through gut microbiota and metabolites of microbial or milk origin. Mediating gut microbiota included Enterobacteriaceae, C. difficile, and Streptococcus. The milk or microbial metabolites in CS-SIgA mediating pathways were galactose, fucose, GABA, choline, lactate, pyruvate and 1,2-propanediol. This cohort study documented the impact of birth on infant gut mucosal SIgA. It is the first to characterize gut microbe-metabolite mediated pathways for early-life SIgA maturation, pathways that require experimental verification.

8.
Biomolecules ; 13(2)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36830570

RESUMO

Infant vitamin D liquid formulations often contain non-medicinal excipients such as glycerin (ie. glycerol) and 1,2-propanediol (1,2-PD). We examined whether infant vitamin D supplementation is associated with fecal glycerol and 1,2-PD concentrations at 3 months of age and characterized associations between these two molecules, and gut microbiota and their metabolites. Fecal metabolites and microbiota were quantified using Nuclear Magnetic Resonance Spectroscopy and 16S rRNA sequencing, respectively, in 575 infants from the CHILD Study at 3 months of age. Vitamin D supplement use was determined using questionnaires. Vitamin D supplementation was associated with greater odds of high 1,2-PD (adjusted OR 1.65 95% CI: 1.06, 2.53) and with decreased odds of high fecal glycerol (adjusted OR: 0.62 95% CI: 0.42, 0.90) after adjustment for breastfeeding and other covariates. Our findings were confirmed in linear regression models; vitamin D supplementation was positively associated with fecal 1,2-PD and inversely associated with glycerol (aß: 0.37, 95% CI 0.03, 0.71 & aß: -0.23 95% CI -0.44, -0.03, respectively). Fecal 1,2-PD and glycerol concentrations were negatively correlated with each other. Positive correlations between fecal 1,2-PD, Bifidobacteriaceae, Lactobacillaceae, Enterobacteriaceae and acetate levels were observed. Our research demonstrates that infant vitamin D supplement administration may differentially and independently influence infant gut microbiota metabolites.


Assuntos
Glicerol , Microbiota , Feminino , Humanos , Lactente , RNA Ribossômico 16S/genética , Suplementos Nutricionais , Vitamina D , Vitaminas
9.
mSystems ; 8(2): e0119022, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36790181

RESUMO

The environment plays an instrumental role in the developmental origins of health and disease. Protective features of the environment in the development of asthma and atopy have been insufficiently studied. We used data from the CHILD (Canadian Healthy Infant Longitudinal Development) Cohort Study to examine relationships between living near natural green spaces in early infancy in Edmonton, AB, Canada and the development of atopic sensitization at 1 year and 3 years of age in a cohort of 699 infants, and whether these associations were mediated by infant gut microbiota (measured using 16s V4 amplicon sequencing) at 4 months. The Urban Planning Land Vegetation Index (uPLVI) map of the City of Edmonton was used to assess infants' exposure to natural spaces based on their home postal codes, and atopic sensitization was assessed using skin prink testing (SPTs) for common food and inhalant allergens. Our findings suggest there is a protective effect of natural green space proximity on the development of multiple inhalant atopic sensitizations at 3 years (odds ratio = 0.28 [95% CI 0.09, 0.90]). This relationship was mediated by changes to Actinobacteria diversity in infant fecal samples taken at 4 months. We also found a positive association between nature proximity and sensitization to at least one food or inhaled allergen; this association was not mediated by gut microbiota. Together, these findings underscore the importance of promoting natural urban greenspace preservation to improve child health by reducing atopic disease susceptibility. IMPORTANCE Our findings highlight the importance of preserving natural green space in urban settings to prevent sensitization to environmental allergens and promote early-life gut microbiota pathways to this health benefit. These findings support a mediating role of gut microbiome compositions in health and disease susceptibility. This study used unique, accurate, and comprehensive methodology to classify natural space exposure via a high-resolution topographical map of foliage subtypes within the City of Edmonton limits. These methods are improvements from other methods previously used to classify natural space exposure, such as the normalized density vegetation index from satellite imagery, which is not able to distinguish anthropogenic from green space. The use of these methods and the associations found between natural green space exposure and atopic sensitization outcomes support their use in future studies. Our findings also provide many avenues for future research including longer term follow up of this cohort and investigation of a causal role of reduced Actinobacteria diversity on atopic sensitization development.


Assuntos
Microbioma Gastrointestinal , Hipersensibilidade Imediata , Lactente , Humanos , Microbioma Gastrointestinal/genética , Alérgenos , Parques Recreativos , Estudos de Coortes , Suscetibilidade a Doenças , Canadá
10.
Med ; 4(2): 92-112.e5, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36603585

RESUMO

BACKGROUND: Early antibiotic exposure is linked to persistent disruption of the infant gut microbiome and subsequent elevated pediatric asthma risk. Breastfeeding acts as a primary modulator of the gut microbiome during early life, but its effect on asthma development has remained unclear. METHODS: We harnessed the CHILD cohort to interrogate the influence of breastfeeding on antibiotic-associated asthma risk in a subset of children (n = 2,521). We then profiled the infant microbiomes in a subset of these children (n = 1,338) using shotgun metagenomic sequencing and compared human milk oligosaccharide and fatty acid composition from paired maternal human milk samples for 561 of these infants. FINDINGS: Children who took antibiotics without breastfeeding had 3-fold higher asthma odds, whereas there was no such association in children who received antibiotics while breastfeeding. This benefit was associated with widespread "re-balancing" of taxonomic and functional components of the infant microbiome. Functional changes associated with asthma protection were linked to enriched Bifidobacterium longum subsp. infantis colonization. Network analysis identified a selection of fucosylated human milk oligosaccharides in paired maternal samples that were positively associated with B. infantis and these broader functional changes. CONCLUSIONS: Our data suggest that breastfeeding and antibiotics have opposing effects on the infant microbiome and that breastfeeding enrichment of B. infantis is associated with reduced antibiotic-associated asthma risk. FUNDING: This work was supported in part by the Canadian Institutes of Health Research; the Allergy, Genes and Environment Network of Centres of Excellence; Genome Canada; and Genome British Columbia.


Assuntos
Asma , Microbiota , Sulfaleno , Criança , Lactente , Feminino , Humanos , Aleitamento Materno , Antibacterianos/efeitos adversos , Microbiota/genética , Bifidobacterium longum subspecies infantis , Oligossacarídeos/uso terapêutico , Colúmbia Britânica , Asma/epidemiologia
11.
Allergy ; 78(2): 418-428, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36107703

RESUMO

BACKGROUND: The infant fecal microbiome is known to impact subsequent asthma risk, but the environmental exposures impacting this association, the role of the maternal microbiome, and how the microbiome impacts different childhood asthma phenotypes are unknown. METHODS: Our objective was to identify associations between features of the prenatal and early-life fecal microbiomes and child asthma phenotypes. We analyzed fecal 16 s rRNA microbiome profiling and fecal metabolomic profiling from stool samples collected from mothers during the third trimester of pregnancy (n = 120) and offspring at ages 3-6 months (n = 265), 1 (n = 436) and 3 years (n = 506) in a total of 657 mother-child pairs participating in the Vitamin D Antenatal Asthma Reduction Trial. We used clinical data from birth to age 6 years to characterize subjects with asthma as having early, transient or active asthma phenotypes. In addition to identifying specific genera that were robustly associated with asthma phenotypes in multiple covariate-adjusted models, we clustered subjects by their longitudinal microbiome composition and sought associations between fecal metabolites and relevant microbiome and clinical features. RESULTS: Seven maternal and two infant fecal microbial taxa were robustly associated with at least one asthma phenotype, and a longitudinal gut microenvironment profile was associated with early asthma (Fisher exact test p = .03). Though mode of delivery was not directly associated with asthma, we found substantial evidence for a pathway whereby cesarean section reduces fecal Bacteroides and microbial sphingolipids, increasing susceptibility to early asthma. CONCLUSION: Overall, our results suggest that the early-life, including prenatal, fecal microbiome modifies risk of asthma, especially asthma with onset by age 3 years.


Assuntos
Asma , Microbioma Gastrointestinal , Microbiota , Feminino , Gravidez , Humanos , Cesárea , Asma/diagnóstico , Asma/epidemiologia , Asma/etiologia , Fenótipo
12.
Front Pediatr ; 10: 734428, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389362

RESUMO

Introduction: Food sensitization is a first and strong indicator of immune deviation in the progression to other allergic conditions. Sensitization to food or other allergens and related inflammation during critical windows of infant development may adversely affect neurodevelopmental milestones. However, additional research is needed to test this association further. Methods: Associations between atopic (any food or aeroallergen) or food sensitization (specific to egg, soybean, peanut, and milk) at age 1 year and neurodevelopment up to 2 years of age were evaluated in the national CHILD Cohort Study, with a secondary aim examining whether these associations were sex-specific. Food and atopic sensitization were assessed by skin prick tests (SPT) in 1-year-old infants, with neurodevelopment assessed using the cognitive, language, motor, and social-emotional subscales of the Bayley Scales of Infant Development (BSID-III) administered at 1 and 2 years of age. Results: Atopic sensitization was present among 16.4% of infants, while 13.4% had food sensitizations. Only socioemotional scores reached statistical significance among the four BSID-III domains. Both atopic and food sensitization at 1 year of age was associated with lower social-emotional scores, independent of the infant's ethnicity. These findings were sex-specific and only observed among boys, among whom social-emotional scores were lowered by 5 points if atopic sensitization was present (-5.22 [95% CI: -9.96, -0.47], p = 0.03) or if food sensitization was present (-4.85 [95% CI: -9.82,0.11], p = 0.06). Similar results were observed using the standard SPT cut-off of ≥3 mm - for atopic sensitization (-5.17 [95% CI: -11.14, -0.80], p = 0.09) and for food sensitization (-4.61 [95% CI: -10.96, 1.74], p = 0.15). Conclusion: In our study of term infants, we found an inverse, cross-sectional association between atopic and food sensitization status and social-emotional development scores in male children but not female children.

13.
Children (Basel) ; 9(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36291411

RESUMO

Limited data exist on pharmaceutical product use by infants, although available data suggests higher prevalence of use among children under 12 months of age. We conducted a descriptive study of 3050 infants recruited in the CHILD Cohort Study, a prospective, multicenter, longitudinal cohort following children from pregnancy through childhood. Parents were surveyed for use of prescription and over-the-counter drugs, and natural health products (NHPs, including homeopathic products and vitamins) at 3, 6, and 12 months after delivery. By one year of age, 96.0% of children had taken at least one pharmaceutical product. Among 307 reported products, 32 were given to at least 1% of cohort infants. Vitamin D, acetaminophen, ibuprofen, topical hydrocortisone, amoxicillin, and nystatin were the most common medications and natural health products (NHPs) received, with 8/32 of the most frequently used products being NHPs. Overall, 14.7% of pharmaceutical products administered to children were off-label and 35.8% were NHPs or products without a Drug Identification Number (DIN). The use of over-the-counter medications and NHPs is common and off-label use of drugs is frequent, even in the first year of life. This study highlights the importance of conducting studies on medication use in infants, and of infant medication use monitoring by healthcare providers.

14.
Mucosal Immunol ; 15(6): 1071-1084, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35970917

RESUMO

Advances in technology and software have radically expanded the scope of metabolomics studies and allow us to monitor a broad transect of central carbon metabolism in routine studies. These increasingly sophisticated tools have shown that many human diseases are modulated by microbial metabolism. Despite this, it remains surprisingly difficult to move beyond these statistical associations and identify the specific molecular mechanisms that link dysbiosis to the progression of human disease. This difficulty stems from both the biological intricacies of host-microbiome dynamics as well as the analytical complexities inherent to microbiome metabolism research. The primary objective of this review is to examine the experimental and computational tools that can provide insights into the molecular mechanisms at work in host-microbiome interactions and to highlight the undeveloped frontiers that are currently holding back microbiome research from fully leveraging the benefits of modern metabolomics.


Assuntos
Microbiota , Humanos , Metabolômica , Disbiose , Fenótipo
15.
Int J Obes (Lond) ; 46(9): 1712-1719, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35840772

RESUMO

BACKGROUND/OBJECTIVES: Differences in gut microbiota, metabolites and immune markers have been observed between individuals with and without obesity. Our study determined the temporal association between infant fecal gut metabolites, sIgA and body mass index (BMI) z score of preschool children, independent of pre/postnatal factors. SUBJECTS/METHODS: The study includes a subset of 647 infants from the CHILD Cohort Study (recruited between January 1, 2009, and December 31, 2012). Fecal metabolites and sIgA were measured at 3-4 months of age, and age and sex adjusted BMI z scores at 1 and 3 years of age. Associations between the metabolites, IgA, and child BMI z scores at age 1 and 3 years were tested using linear regression adjusted for pre/postnatal factors (breastfeeding, birthweight-for-gestational age, birthmode and IAP, solid food introduction). RESULTS: Mean BMI z score for all infants was 0.34 (SD 1.16) at 1 year (N = 647) and 0.71 (SD 1.06) at 3 years (N = 573). High fecal formate in infancy was associated with a significantly lower BMI z score (adjusted mean difference -0.23 (95% CI -0.42, -0.04)) and high butyrate was associated with a higher BMI z score (adjusted mean difference 0.21 (95% CI 0.01, 0.41)) at age 3 years only. The influence of formate and butyrate on BMI z score at age 3 were seen only in those that were not exclusively breastfed at stool sample collection (adjusted mean difference for high formate/EBF- group: -0.33 (95%CI -0.55, -0.10) and 0.25 (95% CI 0.02, 0.47) for high butyrate/EBF- group). No associations were seen between sIgA and BMI z score at age 1 or 3 years in adjusted regression models. CONCLUSION AND RELEVANCE: Differences in fecal metabolite levels in early infancy were associated with childhood BMI. This study identifies an important area of future research in understanding the pathogenesis of obesity.


Assuntos
Imunoglobulina A Secretora , Obesidade Pediátrica , Índice de Massa Corporal , Butiratos , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Formiatos , Humanos , Lactente , Obesidade , Obesidade Pediátrica/epidemiologia , Estudos Prospectivos
16.
Mucosal Immunol ; 15(6): 1060-1070, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35869146

RESUMO

A priori power and sample size calculations are crucial to appropriately test null hypotheses and obtain valid conclusions from all clinical studies. Statistical tests to evaluate hypotheses in microbiome studies need to consider intrinsic features of microbiome datasets that do not apply to classic sample size calculation. In this review, we summarize statistical approaches to calculate sample sizes for typical microbiome study scenarios, including those that hypothesize microbiome features to be the outcome, the exposure or the mediator, and provide relevant R scripts to conduct some of these calculations. This review is intended to be a resource to facilitate the conduct of sample size calculations that are based on testable hypotheses across several dimensions of the microbiome. Implementation of these methods will improve the quality of human or animal microbiome studies, enabling reliable conclusions that will generalize beyond the study sample.


Assuntos
Microbiota , Animais , Humanos , Tamanho da Amostra
17.
Antibiotics (Basel) ; 11(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35884235

RESUMO

The relationship between antibiotic use and Clostridioides difficile (C. difficile) has been well established in adults and older children but remains unclear and is yet to be fully examined in infant populations. This study aimed to determine the separate and cumulative impact from antibiotics and household cleaning products on C. difficile colonization in infants. This study included 1429 infants at 3-4 months of age and 1728 infants at 12 months of age from the Canadian Healthy Infant Longitudinal Development (CHILD) birth cohort. The levels of infant antimicrobial exposure were obtained from hospital birth charts and standardized questionnaires. Infant gut microbiota was characterized by Illumina 16S ribosomal ribonucleic acid (rRNA) gene sequencing. Analysis of C. difficile was performed using a quantitative polymerase chain reaction (qPCR). Overall, C. difficile colonized 31% and 46% of infants at 3-4 months and 12 months, respectively. At 3-4 months, C. difficile colonization was significantly higher in infants exposed to both antibiotics and higher (above average) usage of household cleaning products (adjusted odds ratio (aOR) 1.50, 95% CI 1.03-2.17; p = 0.032) than in infants who had the least antimicrobial exposure. This higher colonization persisted up to 12 months of age. Our study suggests that cumulative exposure to systemic antibiotics and higher usage of household cleaning products facilitates C. difficile colonization in infants. Further research is needed to understand the future health impacts.

18.
Int J Obes (Lond) ; 46(7): 1351-1358, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35428865

RESUMO

BACKGROUND/OBJECTIVE: The steep rise in childhood obesity has emerged as a worldwide public health problem. The first 4 years of life are a critical window where long-term developmental patterns of body mass index (BMI) are established and a critical period for microbiota maturation. Understanding how the early-life microbiota relate to preschool growth may be useful for identifying preventive interventions for childhood obesity. We aim to investigate whether longitudinal shifts within the bacterial community between 3 months and 1 year of life are associated with preschool BMI z-score trajectories. METHODS: BMI trajectories from birth to 5 years of age were identified using group-based trajectory modeling in 3059 children. Their association with familial and environmental factors were analyzed. Infant gut microbiota at 3 months and 1 year was defined by 16S RNA sequencing and changes in diversity and composition within each BMIz trajectory were analyzed. RESULTS: Four BMIz trajectories were identified: low stable, normative, high stable, and rapid growth. Infants in the rapid growth trajectory were less likely to have been breastfed, and gained less microbiota diversity in the first year of life. Relative abundance of Akkermansia increased with age in children with stable growth, but decreased in those with rapid growth, abundance of Ruminococcus and Clostridium at 1 year were elevated in children with rapid growth. Children who were breastfed at 6 months had increased levels of Sutterella, and decreased levels of Ruminococcus and Clostridium. CONCLUSION: This study provides new insights into the relationship between the gut microbiota in infancy and patterns of growth in a cohort of preschool Canadian children. We highlight that rapid growth since birth is associated with bacteria shown in animal models to have a causative role in weight gain. Our findings support a novel avenue of research targeted on tangible interventions to reduce childhood obesity.


Assuntos
Microbioma Gastrointestinal , Obesidade Pediátrica , Bactérias , Índice de Massa Corporal , Canadá , Criança , Pré-Escolar , Humanos , Lactente , Obesidade Pediátrica/epidemiologia , Obesidade Pediátrica/etiologia , Obesidade Pediátrica/prevenção & controle , Aumento de Peso
19.
Clin Obes ; 12(1): e12490, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34617401

RESUMO

Our study purpose was to determine the prevalence of metabolically healthy obesity (MHO) and examine factors associated with MHO in children with obesity. This cross-sectional study was a secondary, exploratory analysis of data that included 2-17 years old with a body mass index (BMI) ≥85th percentile from the CANadian Pediatric Weight management Registry. Children were classified as having MHO or metabolically unhealthy obesity (MUO) using consensus-based criteria. Those with MHO had normal triglycerides, high-density lipoprotein cholesterol, blood pressure, and fasting glucose. Logistic regression was used to examine factors associated with MHO, which included calculating odds ratios (ORs) and 95% confidence intervals (CIs). In total, 945 children were included (mean age: 12.3 years; 51% female). The prevalence of MHO was 31% (n = 297), with lower levels across increasing age categories (2-5 years [n = 18; 43%], 6-11 years [n = 127; 35%], 12-17 years [n = 152; 28%]). Children with MHO were younger, weighed less, and had lower BMI z-scores than their peers with MUO (all p < 0.01). MHO status was positively associated with physical activity (OR: 1.18; 95% CI: 1.01-1.38), skim milk intake (OR: 1.10; 95% CI: 1.01-1.19), and fruit intake (OR: 1.12; 95% CI: 1.01-1.24) and negatively associated with BMI z-score (OR: 0.69; 95% CI: 0.60-0.79), total screen time in hours (OR: 0.79; 96% CI: 0.68-0.92), and intake of fruit flavoured drinks (OR: 0.91; 95% CI: 0.84-0.99). These findings may help guide clinical decision-making regarding obesity management by focusing on children with MUO who are at relatively high cardiometabolic risk.


Assuntos
Síndrome Metabólica , Obesidade Metabolicamente Benigna , Obesidade Pediátrica , Adolescente , Índice de Massa Corporal , Canadá/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Masculino , Obesidade Pediátrica/epidemiologia , Sistema de Registros , Fatores de Risco , Circunferência da Cintura
20.
J Allergy Clin Immunol ; 148(6): 1387-1393, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34688495

RESUMO

Atopic diathesis encompassing atopic dermatitis (AD), allergic rhinoconjunctivitis, food allergy, eosinophilic esophagitis, and asthma is a widely prevalent condition with a broad heterogeneity in clinical course, age of onset, and lifespan persistence. A primary event in AD is the commonly inherited epidermal barrier dysfunction. Together with the host-microbiome interactions, barrier defect and allergen exposure modulate both innate and adaptive immunity, thus triggering and maintaining the inflammatory response. Microbiome diversity, together with the host's contact with nonpathogenic microbes in childhood, is a prerequisite for functional maturation of the immune system, which is in part mediated by microbiome-induced epigenetic changes. Yet, whether microbiome alterations are the result or the reason for barrier impairment and inflammatory response of the host is unclear. Exposure to locally prevalent microbial species could contribute to further modification of the disease course. The objective of this review is to reveal the link between changes in the skin microbiota, barrier dysfunction, and inflammation in AD. Addressing unmet needs includes determining the genetic background of AD susceptibility; the epigenetic modifications induced by the microbiota and other environmental factors; the role of globally diverse provoking factors; and the implementation of personalized, phenotype-specific therapies such as a epidermal barrier restoration in infancy and microbiota modulation via systemic or topical interventions, all of which open gaps for future research.


Assuntos
Dermatite Atópica/imunologia , Microbiota/imunologia , Pele/imunologia , Animais , Dermatite Atópica/microbiologia , Epigênese Genética , Humanos , Hipodermóclise , Medicina de Precisão , Pele/microbiologia , Junções Íntimas/metabolismo , Perda Insensível de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...